В настоящее время около 30-40% детей испытывают трудности при обучении в школе. Наиболее остро этот вопрос встает на начальных этапах школьного обучения...
Игры в педагогическом процессе
Тема игры в педагогическом процессе очень актуальна, игра – мощнейшая сфера «самостоятельности» человека: самовыражения, самоопределения.
Свое название педагогика получила от греческого слова "пайдагогос" (пайд — дитя, гогос — веду), которое означает детоводство или дитяведение.
Свой современный вид сферическая тригонометрия, как и тригонометрия, приняла в трудах великого Леонарда Эйлера, уроженца Базеля, работавшего в Петербурге и Берлине. Если до Эйлера тригонометрия имела дело со значениями тригонометрических функций, то тригонометрия Эйлера имеет дело с тригонометрическими функциями, которые он связал с помощью известной формулы, носящей его имя, с экспоненциальной функцией благодаря этому из тригонометрических формул исчез sinus totus полный (наибольший) синус, т. е. радиус круга, место которого в этих формулах теперь заняла единица. Он создал тригонометрию как науку о функциях, дал ей аналитическое выражение.
Эйлеру принадлежит мысль рассматривать тригонометрические функции как безмерные числа, называя их общим термином: «трансцендентные количества, получающиеся из круга». Эйлер ввел в тригонометрию символику, практически совпадающую с привычной для нас, получил ряд новых соотношений, установил связь тригонометрических функций с показательными, дал правило знаков функций для всех четвертей, получил обобщенную формулу приведения и освободил тригонометрию от многих ошибок, которые допускались почти во всех европейских учебниках математики (тупые углы не имеют функций и т.п.). Тем самым в развитии тригонометрии был сделан очень важный шаг. Тригонометрические функции оказались просто одним из классов аналитических функций.
Примерно в то же время, в 1770 г., появился и удержался до нашего времени термин «тригонометрические функции». Его ввел Г.С. Клюгель в работе «Аналитическая тригонометрия» Эти функции сразу получили широкое применение и стали важной частью аппарата математического анализа. Почти одновременно тригонометрия стала применяться в традиционной области ее использования, в геометрии. Таким образом, к XIX в. тригонометрия, не теряя теоретической целостности, приобрела разнообразные интерпретации, проникла во многие разделы математики.
В современной структуре математических наук тригонометрия определяется как та их часть, где исследуют один из классов аналитических функций, называемых тригонометрическими, а также их приложения. Эти функции чаще всего вводятся с помощью специальной конструкции - порождающей окружности. В качестве своих аргументов они могут иметь как действительные, так и комплексные величины, что придает им высокую степень общности. Их специфические свойства: периодичность, четность или нечетность и др. позволяют с помощью формул (например, формул приведения) существенно упрощать и облегчать операции с ними.
Совершенствование правовой базы привлечения внебюджетных источников финансирования
МДОУ №75
Перейдем к проблеме финансирования. Рассмотрим возможность внебюджетного финансирования, как один из вариантов пополнения бюджета нашей организации, отношения между дошкольным образованием и муниципа ...
Анализ произведений
"Как черта выставить дураком" - это, по собственному признанию Гоголя, было главною мыслью всей его жизни и творчества. "Уже с давних пор я только и хлопочу о том, чтобы после моего со ...